Explora IDNStudies.com para soluciones rápidas a tus problemas. Únete a nuestra plataforma para recibir respuestas rápidas y precisas de profesionales en diversos campos, resolviendo tus dudas de manera efectiva y confiable.
Sagot :
Te lo explico con un vocabulario informal: Una función es creciente en los puntos en los que el dibujo va hacia arriba (siempre hacia arriba) según vas avanzando a la derecha. Si la gráfica va bajando, se dice que es decreciente. Los puntos donde cambia de creciente a decreciente se dice que son máximos de la función, y los puntos donde cambia de decreciente a creciente, se dice que son mínimos de la función. Si la función es totalmente horizontal en un tramo (segmento) se dice que la función es constante en ese segmento.
No olvides que los "tramos" o "segmentos" donde se dice que una función es constante, creciente o decreciente son los intervalos medidos en el eje X, desde donde empieza a serlo hasta donde termina sin ser "interrumpida" su monotonía.
Así, en la función [tex]y=x^2[/tex], que es la típica parábola que pasa por el (0, 0) y forma una U, se dice que la función es decreciente desde el extremo izquierdo hasta el 0, que en el 0 cambia de decreciente a creciente, y que a partir del 0 la función es creciente. Matemáticamente, se expresa así:
- [tex]f[/tex] es decreciente en [tex]\left(-\infty, 0\right)[/tex]
- [tex]f[/tex] es creciente en [tex]\left(0, +\infty \right)[/tex]
- [tex]f[/tex] tiene un mínimo en [tex]x=0[/tex]
No olvides que los "tramos" o "segmentos" donde se dice que una función es constante, creciente o decreciente son los intervalos medidos en el eje X, desde donde empieza a serlo hasta donde termina sin ser "interrumpida" su monotonía.
Así, en la función [tex]y=x^2[/tex], que es la típica parábola que pasa por el (0, 0) y forma una U, se dice que la función es decreciente desde el extremo izquierdo hasta el 0, que en el 0 cambia de decreciente a creciente, y que a partir del 0 la función es creciente. Matemáticamente, se expresa así:
- [tex]f[/tex] es decreciente en [tex]\left(-\infty, 0\right)[/tex]
- [tex]f[/tex] es creciente en [tex]\left(0, +\infty \right)[/tex]
- [tex]f[/tex] tiene un mínimo en [tex]x=0[/tex]
Apreciamos tu dedicación. Sigue haciendo preguntas y proporcionando respuestas. Juntos construiremos una comunidad de aprendizaje continuo y enriquecedor para todos. Gracias por elegir IDNStudies.com para aclarar tus dudas. Vuelve pronto para obtener más respuestas claras y concisas.