Únete a IDNStudies.com para respuestas detalladas a tus preguntas. Nuestra plataforma está diseñada para proporcionar respuestas rápidas y precisas a todas tus consultas.
Sagot :
Ionización, formación de moléculas o átomos con carga eléctrica. Los átomos son eléctricamente neutros ya que los electrones con carga negativa son iguales en número a los protones de carga positiva en los núcleos. Al combinarse sodio con cloro, para formar cloruro de sodio, cada átomo de sodio cede un electrón a un átomo de cloro, dando como resultado un ion sodio con carga positiva y un ion cloro con carga negativa. En un cristal de cloruro de sodio la fuerte atracción electrostática entre iones de cargas opuestas mantiene firmemente los iones en su sitio, estableciéndose un enlace iónico. Cuando el cloruro de sodio se funde, los iones tienden a disociarse a causa de su movimiento térmico y pueden moverse libremente. Si se colocan dos electrodos en cloruro de sodio fundido y se le aplica una diferencia de potencial eléctrico, los iones sodio emigran al electrodo negativo y los iones cloro lo hacen al electrodo positivo, produciendo una corriente eléctrica. Cuando se disuelve cloruro de sodio en agua, los iones tienen aún más facilidad para disociarse (por la atracción entre los iones y el disolvente), y esta disolución es un excelente conductor de la electricidad. Las disoluciones de la mayoría de los ácidos inorgánicos, bases y sales son poco conductoras de la electricidad y reciben el nombre de electrólitos. En cambio, las disoluciones de azúcar, alcohol, glicerina y muchas otras sustancias orgánicas son conductoras de la electricidad y se denominan no electrólitos. Los electrólitos que proporcionan disoluciones altamente conductoras se llaman electrólitos fuertes (como el ácido nítrico o el cloruro de sodio) y los que producen disoluciones de baja conductividad reciben el nombre de electrólitos débiles (como el cloruro de mercurio (II) o el ácido etanoico).
Investigación
El químico sueco Svante August Arrhenius fue el primero en descubrir que algunas sustancias en disolución se encuentran en forma de iones y no de moléculas, incluso en ausencia de una diferencia de potencial eléctrico. Entre 1880 y 1890, estableció la hipótesis de que cuando un electrólito se introduce en una disolución, se disocia parcialmente en iones separados, y que el grado de disociación depende de la naturaleza del electrólito y de la concentración de la disolución. Según la teoría de Arrhenius, al disolver una determinada cantidad de cloruro de sodio en un gran volumen de agua, los iones se disocian en mayor grado que si esa misma cantidad se disuelve en un volumen menor de agua. El físico holandés Petrus Debye desarrolló una teoría diferente sobre la disociación de los electrólitos, que fue ampliamente aceptada a partir de 1923. La llamada teoría de Debye-Hückel afirma que los electrólitos están totalmente disociados en una disolución. La tendencia de los iones a emigrar y conducir la electricidad queda retardada por las atracciones electrostáticas entre los iones de cargas opuestas y entre los iones y el disolvente. A medida que aumenta la concentración de la disolución, se incrementa el efecto retardante. Así, una cantidad fija de cloruro de sodio resulta mejor conductor si se disuelve en un gran volumen de agua, al encontrarse los iones más apartados entre sí, ejerciendo una atracción menor respecto a los demás y respecto a las moléculas del disolvente. Sin embargo, los iones no tienen libertad total para emigrar. La constante dieléctrica del disolvente es otro factor importante en las propiedades de la disolución. La ionización es mayor en un disolvente como el agua, que tiene una constante dieléctrica elevada.
La ionización en los gases
Cuando una partícula de movimiento rápido, como un electrón, una partícula alfa o un fotón, colisiona con un átomo de gas, éste expulsa un electrón, dejando un ion cargado. Los iones convierten en conductor al gas. La cantidad de energía necesaria para extraer un electrón de un átomo se llama energía de ionización. El principio de ionización de gases mediante diversas formas de radiación se aplica en la detección y medida de la radiación y en la separación y análisis de isótopos en el espectrómetro de masas. La atmósfera contiene siempre iones producidos por la radiación cósmica y la luz ultravioleta.
Cuando un gas está compuesto de un número casi igual de iones positivos y negativos se denomina plasma. Ejemplos de plasma son las atmósferas de la mayoría de las estrellas, los gases en el interior de los tubos fluorescentes de los rótulos y anuncios, y los gases de la capa superior de la atmósfera terrestre. Un gas se transforma en plasma cuando la energía cinética de las partículas del gas se eleva hasta igualar la energía de ionización del gas. Cuando alcanza este nivel, las colisiones de las partículas del gas provocan una rápida ionización en cascada, y el gas se transforma en plasma. Si se aporta la suficiente energía aplicando calor, la temperatura crítica se situará entre 50.000 y 100.000 K, elevándose a cientos de millones de grados, la temperatura requerida para mantener el plasma. Otro modo de convertir un gas en plasma consiste en hacer pasar electrones de alta energía a través del gas. Los físicos nucleares consideran que un plasma en el interior de un campo magnético cerrado les permitirá aprovechar la enorme energía de la fusión termonuclear para fines pacíficos. En el plano conceptual, se trataría de un motor de plasma dirigido para propulsar las naves espaciales.
Investigación
El químico sueco Svante August Arrhenius fue el primero en descubrir que algunas sustancias en disolución se encuentran en forma de iones y no de moléculas, incluso en ausencia de una diferencia de potencial eléctrico. Entre 1880 y 1890, estableció la hipótesis de que cuando un electrólito se introduce en una disolución, se disocia parcialmente en iones separados, y que el grado de disociación depende de la naturaleza del electrólito y de la concentración de la disolución. Según la teoría de Arrhenius, al disolver una determinada cantidad de cloruro de sodio en un gran volumen de agua, los iones se disocian en mayor grado que si esa misma cantidad se disuelve en un volumen menor de agua. El físico holandés Petrus Debye desarrolló una teoría diferente sobre la disociación de los electrólitos, que fue ampliamente aceptada a partir de 1923. La llamada teoría de Debye-Hückel afirma que los electrólitos están totalmente disociados en una disolución. La tendencia de los iones a emigrar y conducir la electricidad queda retardada por las atracciones electrostáticas entre los iones de cargas opuestas y entre los iones y el disolvente. A medida que aumenta la concentración de la disolución, se incrementa el efecto retardante. Así, una cantidad fija de cloruro de sodio resulta mejor conductor si se disuelve en un gran volumen de agua, al encontrarse los iones más apartados entre sí, ejerciendo una atracción menor respecto a los demás y respecto a las moléculas del disolvente. Sin embargo, los iones no tienen libertad total para emigrar. La constante dieléctrica del disolvente es otro factor importante en las propiedades de la disolución. La ionización es mayor en un disolvente como el agua, que tiene una constante dieléctrica elevada.
La ionización en los gases
Cuando una partícula de movimiento rápido, como un electrón, una partícula alfa o un fotón, colisiona con un átomo de gas, éste expulsa un electrón, dejando un ion cargado. Los iones convierten en conductor al gas. La cantidad de energía necesaria para extraer un electrón de un átomo se llama energía de ionización. El principio de ionización de gases mediante diversas formas de radiación se aplica en la detección y medida de la radiación y en la separación y análisis de isótopos en el espectrómetro de masas. La atmósfera contiene siempre iones producidos por la radiación cósmica y la luz ultravioleta.
Cuando un gas está compuesto de un número casi igual de iones positivos y negativos se denomina plasma. Ejemplos de plasma son las atmósferas de la mayoría de las estrellas, los gases en el interior de los tubos fluorescentes de los rótulos y anuncios, y los gases de la capa superior de la atmósfera terrestre. Un gas se transforma en plasma cuando la energía cinética de las partículas del gas se eleva hasta igualar la energía de ionización del gas. Cuando alcanza este nivel, las colisiones de las partículas del gas provocan una rápida ionización en cascada, y el gas se transforma en plasma. Si se aporta la suficiente energía aplicando calor, la temperatura crítica se situará entre 50.000 y 100.000 K, elevándose a cientos de millones de grados, la temperatura requerida para mantener el plasma. Otro modo de convertir un gas en plasma consiste en hacer pasar electrones de alta energía a través del gas. Los físicos nucleares consideran que un plasma en el interior de un campo magnético cerrado les permitirá aprovechar la enorme energía de la fusión termonuclear para fines pacíficos. En el plano conceptual, se trataría de un motor de plasma dirigido para propulsar las naves espaciales.
La teoría de la ionización fue descubierta por Svante Arrhenius, en 1884. propuso clasificar ciertas sustancias en ácidos y bases, ya que forman iones en soluciones acuosas.
¿A quién se debe la teoría de ionización y que propone ?
La teoría de ionización se debe al químico sueco llamado Svante Arrhenius, en 1884 ya que propuso clasificar ciertas sustancias en ácidos y bases, puesto que forman iones en soluciones acuosas.
La ionización es un proceso químico-físico por medio del cual se forman iones. Los iones son átomos y moléculas cargados eléctricamente según la deficiencia o exceso de electrones con la cual quedan.
La teoría de Arrhenius tiene su fundamento en que las moléculas de los electrólitos se disocian en dos o más iones. Así mismo demostró que la fuerza de un ácido o de una base esta en función de su disociación.
Para conocer más de la teoría de ionización de Arrhenius consulta el enlace https://brainly.lat/tarea/2315273
#SPJ2
Apreciamos tu contribución. No olvides volver para hacer más preguntas y aprender cosas nuevas. Tu conocimiento es esencial para nuestra comunidad. Gracias por visitar IDNStudies.com, donde tus dudas se resuelven fácilmente. Vuelve para obtener más información útil.