IDNStudies.com, tu plataforma confiable para respuestas precisas. Encuentra la información que necesitas de manera rápida y sencilla a través de nuestra plataforma de preguntas y respuestas, diseñada para ti.
Sagot :
NDUCCIÓN EJERCICIOS RESUELTOS 1.Demostrar que la suma de los η primeros números naturales es igual a η(η +1)/2. Solución: Queremos probar que ∀η∈Ν : 1 + 2 + 3 + ... + η=η(η +1)/2 Sea ρ(η) : 1 + 2 + 3 + ... + η=η(η +1)/2 ; debemos probar que ρ(η) satisface las propiedades (1) y (2) del teorema 2. (1) ρ(1): 1 = 1(1 + 1)/2 , lo cual es verdadero. (2)Sea η∈Ν , debemos probar que ρ(η)⇒ρ(η + 1) es verdadero. Nótese que si ρ(η)es falsa la implicación es verdadera, de modo que hay que hacer la demostración suponiendo que ρ(η)es verdadera. (Esto es lo que se llama hipótesis inductiva). Supongamos entonces que ρ(η) es verdadera, es decir, que 1 +2 +3 + ... + η = η(η+1)/2es verdadera. Como ρ(η+1) : 1 +2 +3 + ... + (η+1)=(η+1)[(η+1) + 1 ]/2 , ρ(η+1) debe poder formarse de ρ(η) sumando η+1 a ambos miembros de la igualdad (de la hipótesis inductiva) : 1 +2 + 3 + ... + η+ (η+1)=η(η+1)/2+(η+1)=(η+1)[η/2+1]=(η+1)(η+2)/2Hemos confirmado nuestras sospechas, lo que, en lenguaje formal, significa que hemos deducido que ρ(η+1) es verdadera, suponiendo que ρ(η) lo es. Así, hemos probado que ∀η∈Ν : ρ(η)⇒ρ(η+1) es verdadera. Luego, ∀η∈Ν: 1 +2 + 3 + ... + η=η(η+1)/2 es una fórmula correcta
Valoramos mucho tu participación. No olvides regresar para hacer más preguntas y compartir tus conocimientos. Juntos podemos enriquecer nuestro entendimiento colectivo. En IDNStudies.com, tus preguntas siempre tienen solución. Gracias por visitarnos y vuelve para más respuestas útiles.