IDNStudies.com, la plataforma que conecta a expertos con tus preguntas. Encuentra las soluciones que necesitas de manera rápida y sencilla con la ayuda de nuestros expertos en diferentes campos.
Sagot :
TRINOMIO CUADRADO PERFECTO Se llama trinomio cuadrado perfecto al trinomio (polinomio de tres términos) tal que, dos de sus términos son cuadrados perfectos y el otro término es el doble producto de las bases de esos cuadrados.En el trinomio cuadrado perfecto los términos cuadrados son siempre positivos, en cambio el término del doble producto puede ser negativo; en este caso debe ser negativo uno de los términos del binomio cuyo cuadrado es el trinomio dado, del ejemplo anterior tenemos:Ambas son respuestas aceptables.Regla para conocer si un trinomio es cuadrado perfecto
Un trinomio ordenado con relación a una letra es cuadrado perfecto cuando la primera y tercer letra son cuadrados perfectos (o tienen raíz cuadrada exacta) y son positivos y el segundo termino es el doble producto de sus raíces cuadradas. Ejemplos:
Un trinomio ordenado con relación a una letra es cuadrado perfecto cuando la primera y tercer letra son cuadrados perfectos (o tienen raíz cuadrada exacta) y son positivos y el segundo termino es el doble producto de sus raíces cuadradas. Ejemplos:
Hola, los trinomios cuadrados perfectos son más faciles de lo que suenan, te lo explicare con palabras y al mismo tiempo ejemplos para que no te pierdas ¿De acuerdo?
para empezar, un trinomio cuadrado perfecto es el resultado de elevar un binomio al cuadrado. (El cuadrado del primero mas el doble del primer por el segundo termino mas el cuadrado del segundo termino.)
En un trinomio cuadrado perfecto.
Regla para conocer si un trinomio es cuadrado perfecto.
1) Un trinomio ordenado con relación a una letra
2) Es cuadrado perfecto cuando el primer y tercer término son cuadrados perfectos
3) El segundo término es el doble producto de sus raíces cuadradas.
Procedimiento para factorizar
1) Se extrae la raíz cuadrada del primer y tercer término; en el ejemplo a y b.
2) Se forma un producto de dos factores binomios con la suma de estas raíces; entonces (a + b)(a + b).
3) Este producto es la expresión factorizada (a + b)2.
Si el ejercicio fuera así:
a2 - 2ab + b2 = (a - b) 2
a b
Procedimiento para factorizar
1) Se extrae la raíz cuadrada del primer y tercer término; en el ejemplo a y b.
2) Se forma un producto de dos factores binomios con la diferencia de estas raíces; entonces
(a - b)(a - b).
3) Este producto es la expresión factorizada (a - b)2.
Ejemplo 1: Factorizar x2 + 10x + 25
La raíz cuadrada de : x2 es x
La raíz cuadrada de : 25 es 5
El doble producto de las raíces: 2(x)(5) es 10x
Luego x2 + 10x + 25 = (x + 5)2
Ejemplo 2: Factorizar 49y2 + 14y + 1
La raíz cuadrada de : 49y2 es 7y
La raíz cuadrada de : 1 es 1
El doble producto de las raíces: 2(7y)(1) es 14y
Luego 49y2 + 14y + 1 = (7y + 1)2
Ejemplo 3: Factorizar 81z2 - 180z + 100
La raíz cuadrada de : 81z2 es 9z
La raíz cúbica de : 100 es 10
El doble producto de las raíces: 2(9z)(10) es 180z
Luego 81z2 - 180z + 100 = (9z - 10)2
espero q te sirva
para empezar, un trinomio cuadrado perfecto es el resultado de elevar un binomio al cuadrado. (El cuadrado del primero mas el doble del primer por el segundo termino mas el cuadrado del segundo termino.)
En un trinomio cuadrado perfecto.
Regla para conocer si un trinomio es cuadrado perfecto.
1) Un trinomio ordenado con relación a una letra
2) Es cuadrado perfecto cuando el primer y tercer término son cuadrados perfectos
3) El segundo término es el doble producto de sus raíces cuadradas.
Procedimiento para factorizar
1) Se extrae la raíz cuadrada del primer y tercer término; en el ejemplo a y b.
2) Se forma un producto de dos factores binomios con la suma de estas raíces; entonces (a + b)(a + b).
3) Este producto es la expresión factorizada (a + b)2.
Si el ejercicio fuera así:
a2 - 2ab + b2 = (a - b) 2
a b
Procedimiento para factorizar
1) Se extrae la raíz cuadrada del primer y tercer término; en el ejemplo a y b.
2) Se forma un producto de dos factores binomios con la diferencia de estas raíces; entonces
(a - b)(a - b).
3) Este producto es la expresión factorizada (a - b)2.
Ejemplo 1: Factorizar x2 + 10x + 25
La raíz cuadrada de : x2 es x
La raíz cuadrada de : 25 es 5
El doble producto de las raíces: 2(x)(5) es 10x
Luego x2 + 10x + 25 = (x + 5)2
Ejemplo 2: Factorizar 49y2 + 14y + 1
La raíz cuadrada de : 49y2 es 7y
La raíz cuadrada de : 1 es 1
El doble producto de las raíces: 2(7y)(1) es 14y
Luego 49y2 + 14y + 1 = (7y + 1)2
Ejemplo 3: Factorizar 81z2 - 180z + 100
La raíz cuadrada de : 81z2 es 9z
La raíz cúbica de : 100 es 10
El doble producto de las raíces: 2(9z)(10) es 180z
Luego 81z2 - 180z + 100 = (9z - 10)2
espero q te sirva
Agradecemos tu participación constante. No olvides regresar para compartir tus preguntas y respuestas. Tu conocimiento es vital para nuestra comunidad. IDNStudies.com es tu fuente de respuestas confiables. Gracias por visitarnos y vuelve pronto para más información.