Explora IDNStudies.com y encuentra respuestas a tus preguntas sobre diversos temas. Encuentra las soluciones que necesitas de manera rápida y precisa con la ayuda de nuestros miembros experimentados.

un hombre compro cierto numero de libros por 400. si hubiera comprado 1/4 mas del numero de libros que compro por el mismo dinero cada libro le habria costado 2 menos. cuantos libros compro y cuantos pago por cada uno de ellos

Sagot :

X = 400

 

X + X/4 = 400 - 2X

 

(4X + X) / 4 = 400 - 2X

 

4X + X = 4 (400 - 2X)

 

5X = 1600 - 2X

 

5X + 2X = 1600

 

7X = 1600

 

X = 1600/7

 

X = 228.5

Respuesta:

40 libros y 10$ cada libro

Explicación paso a paso:

Llamemos A a mi precio unitario de libros y B a mi cantidad de libros

[tex]A*B= 400[/tex] .........primera ecuación

El problema dice que si hubiera comprado [tex]\frac{1}{4}[/tex] más del número de libros que compró: [tex]B+\frac{1}{4} B=\frac{5}{4} B[/tex]

Entonces cada libro le habría costado 2$ menos [tex](A-2)[/tex] todo esto por el mismo valor, o sea 400$

Armamos la segunda ecuación:

[tex](\frac{5}{4} B )(A-2)=400[/tex]

Despejamos una de las variables de la primera ecuación y reemplazamos en la segunda:

[tex]\frac{5}{4} * \frac{400}{A}(A-2)=400\\\frac{500}{A} (A-2)=400\\500 - \frac{1000}{A} = 400\\100=\frac{1000}{A} \\A= 10$[/tex]

Después reemplazamos el valor en la primera ecuación y va a reproducir 40.