Explora IDNStudies.com para soluciones rápidas a tus problemas. Únete a nuestra plataforma de preguntas y respuestas para obtener respuestas rápidas y precisas de profesionales en diversos campos de conocimiento.

método geométrico del binomio suma

Método Geométrico Del Binomio Suma class=

Sagot :

Diseño y Selección de Recursos Didácticos en el Desarrollo de las Competencias “Binomio al cuadrado” Facilitadora: Marta Patricia Ruiz López Alumna: Alicia Rodríguez Esquivel Marzo de 2012 2. Propósitos. El alumno conoce los diferentesproductos notables y deduce la regla general de unbinomio al cuadrado, aplicando dos métodos:Geométrico.- Vinculando la geometría con elálgebra, aplicando las fórmulas de áreas decuadrados y rectángulos.Algebraico.- Aplicando leyes de signos, exponentes,ley conmutativa, asociativa y distributiva enexpresiones algebraicas. Alicia E. Rodríguez Esquivel 3. Productos Notables Binomio al cuadrado p² + 2 ps + s² (p + s)² Binomios conjugados c² - s² (c+s)(c-s) Binomios con Productos Notables término común c² + (a + b)c+ ab (c+a)(c+b) Binomio al cubo p³ + 3 p²s + 3ps² + p³ (p + s)³ Cuadrado de un trinomio p² + s² + t² + 2ps + 2pt + 2st (p + s + t)³Alicia E. Rodríguez Esquivel 4. GEOMETRICAMENTERecuerda que el área de un: rectángulo es Ar =b*acuadrado está dado por: Ac = l* l = l² Obtén las áreas de las figuras que se tesolicitaron: o 1 cuadrado verde, cuyo longitud del lado es “p” unidades o1 cuadrado rosa, la dimensión de su lado es “s” unidades o2 rectángulos azules, las dimensiones son de base “s” unidades u de altura “p” unidades.Alicia E. Rodríguez Esquivel 5. Las áreas resultantes de las figuras son: s sp p2 p p ps ps 2 s s Ahora, forma un cuadrado utilizando las 4 figuras y obtén el área total. Alicia E. Rodríguez Esquivel 6. El cuadrado formado por las 4 figuras, sus dimensiones y área total es: Dimensiones: p + s p p2 ps a s ps s2 p s Área Total = p2 +ps + ps + s2 = p2 + 2ps + s2 Alicia E. Rodríguez Esquivel 7. MÉTODO ALGEBRAICOPara calcular el área del cuadrado que se muestra, multiplicamos laslongitudes de sus lados, aplicando la ley distributiva, de signos,exponentes y sumando términos semejantes. Recuerda que (p+s)2=(p+s)(p+s) p (p +s)(p+s)= p2+ ps + sp + s2 =p2+ 2ps +s2 s p s (p+s)2=p2+2ps+s2 Alicia E. Rodríguez Esquivel 8. Observa, ¡¡ con los dos métodos llegamos al mismoresultado!!. (p + s)² = p² + 2ps + s²Ahora escribe en lenguaje algebraico la regla que acabas de deducir, considerando que: p = primer término s = segundo término1. El cuadrado del primer término (p)² +2. El doble producto del primer término por el segundo (2ps) (respetando leyes de signos) +3. El cuadrado del segundo término (s)² Alicia E. Rodríguez Esquivel 9. Ahora, refuerza tu aprendizaje a través de los siguientesapplets:Binomio al cuadrado Ejemplos numéricosPráctica y relaciona los productos con áreas de figurasgeométricas. Vincula el algebra y la geometríaVideo geométricoVideo algebraico Alicia E. Rodríguez Esquivel 10. Ahora, ¡ a practicar !: A) 9x2 + 12x - 16a) (3x – 4)2 = B) 9x2 – 24x + 16 C) 9x2 - 16 D) 9x2 - 12x + 16Elige la respuesta correcta: A B C DAlicia