Haz tus preguntas y obtén respuestas precisas en IDNStudies.com. Encuentra la información que necesitas de manera rápida y sencilla a través de nuestra plataforma de preguntas y respuestas, diseñada para ti.

f(x)=4 x y g(x)=x^ g(f(x)) solucion por favor

Sagot :

Analicemos f o g (x)

f o g (x) = f(g(x))= f (ln(4-x)^2)

En esta parte la función ln(4-x)^2, pasa a ser tu "nuevo x" en la otra función, por tanto queda;

f (ln(4-x)^2) = raíz cuarta de (ln(4-x)^2) = ln(4-x)^(1/2)= ln(4-x)/2

Por tanto; f o g (x)=ln(4-x)/2

Y así con las otras funciones compuestas, espero haberte ayudado,

Analicemos f o g (x)

f o g (x) = f(g(x))= f (ln(4-x)^2)

En esta parte la función ln(4-x)^2, pasa a ser tu "nuevo x" en la otra función, por tanto queda;

f (ln(4-x)^2) = raíz cuarta de (ln(4-x)^2) = ln(4-x)^(1/2)= ln(4-x)/2

Por tanto; f o g (x)=ln(4-x)/2