IDNStudies.com, tu plataforma para respuestas de expertos. Aprende respuestas detalladas a tus preguntas con la vasta experiencia de nuestros expertos en diferentes campos.

Deduce la ecuación de la circunferencia con centro en el punto c(2,-5) y radio 4 luego gráfica en el plano cartesiano

Sagot :

La ecuación de la circunferencia solicitada está dada por:

Expresada en la Forma Ordinaria:

[tex]\large\boxed{ \bold { (x-2)^2+(y+5)^2=16 }}[/tex]

Expresada en la Forma General:

[tex]\large\boxed{ \bold {x^{2}+ y^{2}-4x+10y +13= 0 }}[/tex]

Llevamos el problema al plano cartesiano

Sea la circunferencia:

Con centro en el punto:

[tex]\bold{C (2,-5) \ \ \ (h, k)}[/tex]

Y de radio:

[tex]\bold{ radio = 4 \ u }[/tex]

La ecuación ordinaria de la circunferencia con centro fuera del origen está dada por:

[tex]\large\boxed{ \bold { (x-h)^2+(y-k)^2=r^{2} }}[/tex]

Donde (h, k) son las traslaciones horizontal h y vertical k que representan el centro del círculo. Y donde la distancia entre el centro y cada punto del círculo es igual a la longitud del radio.

La variable r representa el radio del círculo, h representa la distancia X desde el origen y k representa la distancia Y desde el origen

Determinamos la ecuación canónica u ordinaria de la circunferencia

Reemplazando en la ecuación:

[tex]\large\boxed{ \bold { (x-h)^2+(y-k)^2=r^{2} }}[/tex]

Los valores conocidos de (h, k) = C (2,-5) y radio = 4 unidades

[tex]\bold { (x-(2))^2+(y-(-5))^2=(4 )^{2} }[/tex]

[tex]\bold { (x-2)^2+(y+5)^2=(4 )^{2} }[/tex]

[tex]\large\boxed{ \bold { (x-2)^2+(y+5)^2=16 }}[/tex]

La ecuación general de la circunferencia se obtiene de la siguiente forma:

Se parte de la ecuación ordinaria de la circunferencia que hallamos previamente

[tex]\large\boxed{ \bold { (x-h)^2+(y-k)^2=r^{2} }}[/tex]

Donde para obtener la ecuación general se deben desarrollar los binomios al cuadrado

Por lo tanto podemos reescribir la ecuación general de la circunferencia como:

[tex]\large\boxed{\bold {x^2+y^2+Ax+By+C=0}}[/tex]

Convertimos

[tex]\large\boxed{ \bold { (x-2)^2+(y+5)^2=16 }}[/tex]

A la ecuación general de la circunferencia

[tex]\bold { x^{2} -4x +4+ y^{2} +10y + 25 =16 }[/tex]

[tex]\textsf{Igualamos a cero }[/tex]

[tex]\bold { x^{2} -4x +4+ y^{2} +10y + 25 -16 =0 }[/tex]

[tex]\bold { x^{2} + y^{2}-4x+10y + 4+25-16 = 0 }[/tex]

[tex]\bold { x^{2} + y^{2}-4x+10y + 29-16 = 0 }[/tex]

[tex]\large\boxed{ \bold {x^{2}+ y^{2}-4x+10y +13= 0 }}[/tex]

La circunferencia es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro, quedando determinada por el centro y el radio

Se agrega gráfico solicitado como archivo adjunto

View image Arkyta