Obtén respuestas rápidas y fiables en IDNStudies.com. Aprende respuestas confiables a tus preguntas con la vasta experiencia de nuestros expertos en diferentes áreas del conocimiento.
Sagot :
Respuesta:
Explicación paso a paso:
Queremos saber cuánto dinero debemos depositar cada mes (R) durante 9 años en una cuenta que paga el 17% de interés anual compuesto mensualmente para alcanzar un monto total de $1,230,900.
Fórmula a Utilizar
Para resolver este problema, utilizaremos la fórmula de la valor futuro de una anualidad vencida:
VF = R * [(1 + i)^n - 1] / i
Donde:
VF: Valor futuro (en este caso, $1,230,900)
R: Renta o pago periódico (lo que queremos encontrar)
i: Tasa de interés por período (tasa anual / 12 meses)
n: Número de períodos (número de meses)
Sustituyendo los Valores
VF = $1,230,900
i = 17% anual / 12 meses = 0.17 / 12 = 0.014167
n = 9 años * 12 meses/año = 108 meses
Sustituyendo en la fórmula:
$1,230,900 = R * [(1 + 0.014167)^108 - 1] / 0.014167
Resolviendo para R
Para encontrar R, debemos despejarla de la ecuación. Esto implica realizar una serie de operaciones algebraicas. Sin embargo, dado que los cálculos son extensos, lo más práctico es utilizar una calculadora financiera o una hoja de cálculo como Excel.
Utilizando una calculadora financiera o Excel, encontramos que:
R ≈ $6,500
Respuesta Final
Para acumular $1,230,900 en 9 años con una tasa de interés del 17% anual capitalizable mensualmente, se debe depositar aproximadamente $6,500 cada mes.
Valoramos tu contribución. Sigue haciendo preguntas y proporcionando respuestas. Juntos construiremos una comunidad fuerte y unida de conocimiento. Gracias por confiar en IDNStudies.com para aclarar tus dudas. Visítanos nuevamente para obtener más respuestas útiles.