Obtén respuestas claras y concisas a tus preguntas en IDNStudies.com. Obtén información de nuestros expertos, quienes brindan respuestas detalladas a todas tus preguntas.

Utilizando la ley de los senos y coseno hallar los elementos faltantes del triangulo oblicuangulo sabiendo que lado C=24 angulo A=68 y ángulo B=32

Sagot :

El ángulo C faltante del triángulo tiene un valor de 80°

Los lados a y b tienen una longitud de aproximadamente 22.60 y de 12.90 unidades respectivamente

Se trata de un problema trigonométrico en un triángulo cualesquiera.

Donde para resolver triángulos no rectángulos como el de este problema, emplearemos el teorema del seno- también llamado como ley de senos-

Teorema del Seno:

El teorema del seno establece una relación de proporcionalidad existente entre las longitudes de los lados de un triángulo cualquiera con los senos de sus ángulos interiores opuestos.

Dado un triángulo ABC cualquiera con lados a, b y c y con ángulos interiores α, β y γ, siendo estos respectivamente opuestos a los lados,

Entonces se cumple la relación:

[tex]\large\boxed { \bold { \frac{a}{ sen( \alpha )} = \frac{b}{ sen(\beta ) } = \frac{c}{sen(\gamma)} }}[/tex]

Se tiene un triángulo no rectángulo ABC: del cual se conocen la medida de uno de sus lados -con una magnitud de 24 unidades- al que llamamos c, y el valor de dos de sus ángulos -de 68° y de 32°- a los que llamamos A y B respectivamente

Por tanto conocemos para este triángulo:

[tex]\bold{c = 24 \ u}[/tex]

[tex]\bold{A = 68^o}[/tex]

[tex]\bold{B = 32^o}[/tex]

Donde se pide resolver el triángulo ABC, es decir determinar el valor del ángulo y las dimensiones de los lados faltantes

Ver gráfico adjunto

Hallamos el valor del tercer ángulo del triángulo - al cual denotamos como C (γ)

Como la suma de los ángulos interiores de un triángulo es igual a dos rectos, es decir a 180°:

Planteamos:

[tex]\boxed {\bold { 180^o = A+ B+ C}}[/tex]

[tex]\boxed {\bold { 180^o = 68^o+ 32^o+C }}[/tex]

[tex]\boxed {\bold {C = 180^o -68^o- 32^o }}[/tex]

[tex]\large\boxed {\bold {C= 80^o }}[/tex]

El valor del ángulo C (γ) es de 80°

Conocido el valor del tercer ángulo del triángulo:

Calculamos el valor del lado a (lado BC)

[tex]\large\boxed { \bold { \frac{a}{ sen( \alpha ) }= \frac{c}{sen(\gamma )} }}[/tex]

[tex]\boxed { \bold { \frac{a}{ sen(A ) } = \frac{c}{sen(C)} }}[/tex]

[tex]\boxed { \bold { \frac{a}{ sen (68 ^o ) } = \frac{ 24 \ u }{sen(80^o) } }}[/tex]

[tex]\boxed { \bold { a = \frac{ 24 \ u \cdot sen(68 ^o ) }{\ sen(80^o) } }}[/tex]

[tex]\boxed { \bold { a = \frac{ 24 \ u \cdot 0.927183854567 }{0.984807753012} }}[/tex]

[tex]\boxed { \bold { a = \frac{ 22.252412509608 }{ 0.984807753012 }\ u}}[/tex]

[tex]\boxed { \bold { a \approx 22.59569 \ u }}[/tex]

[tex]\textsf{Redondeando}[/tex]

[tex]\large\boxed { \bold { a \approx 22.60 \ unidades }}[/tex]

La longitud del lado a es de aproximadamente 22.60 unidades

Determinamos el valor del lado b (lado AC)

[tex]\large\boxed { \bold { \frac{b}{ sen( \beta ) }= \frac{c}{sen(\gamma)} }}[/tex]

[tex]\boxed { \bold { \frac{b}{ sen(B ) } = \frac{c}{sen(C)} }}[/tex]

[tex]\boxed { \bold { \frac{b }{ sen (32 ^o ) } = \frac{ 24 \ u }{sen(80^o) } }}[/tex]

[tex]\boxed { \bold { b = \frac{ 24 \ u \cdot sen(32 ^o ) }{\ sen(80^o) } }}[/tex]

[tex]\boxed { \bold { b = \frac{24 \ u \cdot 0.529919264233 }{0.984807753012 } } }[/tex]

[tex]\boxed { \bold { b = \frac{ 12.718062341592 }{ 0.984807753012 }\ u}}[/tex]

[tex]\boxed { \bold { b \approx 12.91425 \ u }}[/tex]

[tex]\textsf{Redondeando}[/tex]

[tex]\large\boxed { \bold { b \approx 12.90 \ unidades }}[/tex]

La longitud del lado b es de aproximadamente 12.90 unidades

Se agrega gráfico a escala para comprender las relaciones entre los ángulos y sus lados planteadas, donde se comprueba el resultado obtenido

View image Arkyta