IDNStudies.com, la plataforma perfecta para respuestas precisas y rápidas. Haz tus preguntas y recibe respuestas detalladas de nuestra comunidad de expertos, siempre listos para ayudarte en lo que necesites.
Sagot :
Respuesta:
En total, se pueden formar 60 palabras diferentes con las letras de la palabra. BANANA.
Explicación paso a paso:
nose eso loq me salio en google pipipip no me reporten porfa
Respuesta:
Para calcular cuántas permutaciones diferentes se pueden formar con las letras de la palabra "BANANA", debemos tener en cuenta que algunas letras se repiten.
La fórmula general para calcular las permutaciones de un conjunto con elementos repetidos es:
=
!
1
!
⋅
2
!
⋅
…
⋅
!
P=
n
1
!⋅n
2
!⋅…⋅n
k
!
n!
donde:
n es el número total de elementos.
1
,
2
,
…
,
n
1
,n
2
,…,n
k
son las frecuencias de los elementos que se repiten.
En el caso de la palabra "BANANA", tenemos:
=
6
n=6 letras en total.
La letra A se repite 3 veces.
La letra N se repite 2 veces.
Las letras B y N se repiten 1 vez cada una.
Entonces, la fórmula para calcular las permutaciones diferentes es:
=
6
!
3
!
⋅
2
!
⋅
1
!
P=
3!⋅2!⋅1!
6!
Calculamos cada uno de los factoriales:
6
!
=
720
6!=720
3
!
=
6
3!=6
2
!
=
2
2!=2
1
!
=
1
1!=1
Sustituimos estos valores en la fórmula:
=
720
6
⋅
2
⋅
1
=
720
12
=
60
P=
6⋅2⋅1
720
=
12
720
=60
Por lo tanto, el número de permutaciones diferentes que se pueden formar con las letras de la palabra "BANANA" es 60.
Tu presencia es importante para nosotros. Sigue compartiendo tus experiencias y conocimientos. Juntos alcanzaremos niveles más altos de sabiduría y entendimiento. IDNStudies.com resuelve tus dudas de manera precisa. Gracias por visitarnos y vuelve pronto para más información útil.