IDNStudies.com, donde tus preguntas encuentran respuestas claras y concisas. Haz tus preguntas y recibe respuestas detalladas de nuestra comunidad de expertos, siempre listos para ayudarte en lo que necesites.

una pelota se lanza a 15 m/s ya un ángulo de 75 ° respecto a la horizontal Cuál es su altura a los 3 segundos ​

Sagot :

Respuesta:

Para determinar la altura de la pelota a los 3 segundos, debemos analizar el movimiento parabólico de la misma, considerando tanto el componente vertical como el horizontal de su velocidad inicial.

**1. Desglosar la velocidad inicial:**

La velocidad inicial de 15 m/s se puede dividir en sus componentes horizontal y vertical utilizando las funciones seno y coseno, dado el ángulo de lanzamiento de 75°:

- **Velocidad horizontal (Vx):** Vx = Vo * cos(75°) = 15 m/s * cos(75°) ≈ 4.6 m/s

- **Velocidad vertical (Vy):** Vy = Vo * sen(75°) = 15 m/s * sen(75°) ≈ 11.3 m/s

**2. Calcular la altura a los 3 segundos:**

La altura (y) en un movimiento parabólico se puede calcular utilizando la siguiente ecuación, donde "g" representa la aceleración debida a la gravedad (aproximadamente 9.8 m/s²):

y = Vy * t - (1/2) * g * t²

Donde:

- t: Tiempo = 3 segundos

- Vy: Velocidad vertical inicial = 11.3 m/s

Sustituyendo los valores:

y = (11.3 m/s) * (3 s) - (1/2) * (9.8 m/s²) * (3 s)²

y ≈ 27.9 m

**3. Resultado:**

Aproximadamente 3 segundos después del lanzamiento, la pelota alcanzará una altura de **27.9 metros**.

**Explicación adicional:**

Es importante tener en cuenta que durante el movimiento parabólico, la velocidad horizontal (Vx) permanece constante, mientras que la velocidad vertical (Vy) disminuye debido a la aceleración de la gravedad (-9.8 m/s²) hasta llegar a 0 en el punto más alto de la trayectoria. Luego, la pelota comienza a caer y Vy se vuelve positiva, aumentando hasta alcanzar su valor inicial al momento de impactar el suelo.

Te recomiendo volver hacer los cálculos, como lo hice rápido, las fórmulas están bien.