IDNStudies.com, tu plataforma de referencia para respuestas precisas. Haz tus preguntas y recibe respuestas detalladas de nuestra comunidad de expertos, siempre listos para ayudarte.

Desarrolla E = (x+8)²
Luego indica la suma de coeficientes

Sagot :

Para desarrollar \( E = (x+8)^2 \), aplicamos la identidad algebraica \( (a+b)^2 = a^2 + 2ab + b^2 \), donde en este caso \( a = x \) y \( b = 8 \).

1. **Elevar al cuadrado**:
\[ E = (x+8)^2 = x^2 + 2 \cdot x \cdot 8 + 8^2 \]

2. **Calcular cada término**:
\[ E = x^2 + 16x + 64 \]

Por lo tanto, el desarrollo completo de \( E = (x+8)^2 \) es \( x^2 + 16x + 64 \).

Ahora, para indicar la suma de coeficientes de este polinomio, sumamos los coeficientes individuales de cada término:

- Coeficiente de \( x^2 \): 1
- Coeficiente de \( x \): 16
- Coeficiente constante: 64

Suma de coeficientes = \( 1 + 16 + 64 = 81 \).

Entonces, la suma de los coeficientes del polinomio \( x^2 + 16x + 64 \) es \( \boxed{81} \).