Explora IDNStudies.com para respuestas rápidas y relevantes. Pregunta cualquier cosa y recibe respuestas informadas y detalladas de nuestra comunidad de profesionales especializados.
Sagot :
Respuesta:
Para resolver este problema de MRUV (Movimiento Rectilíneo Uniformemente Variado), utilizaremos las ecuaciones del movimiento. En este caso, tenemos un objeto que parte del estado de reposo con una aceleración de 2,25 m/s² y queremos calcular el tiempo que tarda en recorrer 300 metros y la velocidad.
Primero, utilizaremos la ecuación de posición para encontrar el tiempo:
s = ut + (1/2)at²
Donde:
s = distancia recorrida (300 m)
u = velocidad inicial (0 m/s, ya que parte del reposo)
a = aceleración (2,25 m/s²)
t = tiempo
Sustituyendo los valores conocidos en la ecuación, tenemos:
300 = 0 x t + (1/2) *x2,25 x t²
Simplificando la ecuación, nos queda:
300 = 1,125t²
Dividiendo ambos lados de la ecuación por 1,125, obtenemos:
t² = 300 / 1,125
t² = 266,67
Tomando la raíz cuadrada de ambos lados de la ecuación, obtenemos:
t ≈ √266,67
t ≈ 16,33 segundos
Por lo tanto, el tiempo que tarda en recorrer 300 metros es aproximadamente 16,33 segundos.
Ahora, utilizaremos la ecuación de velocidad para encontrar la velocidad:
v = u + at
Donde:
v = velocidad final (que queremos calcular)
u = velocidad inicial (0 m/s)
a = aceleración (2,25 m/s²)
t = tiempo (16,33 segundos)
Sustituyendo los valores conocidos en la ecuación, tenemos:
v = 0 + 2,25 * 16,33
v ≈ 36,74 m/s
Por lo tanto, la velocidad aproximada es de 36,74 m/s.
Explicación:
sigueme <3
Tu participación en nuestra comunidad es crucial. Continúa haciendo preguntas y proporcionando respuestas. Juntos podemos construir una comunidad vibrante y enriquecedora. IDNStudies.com resuelve tus dudas de manera precisa. Gracias por visitarnos y vuelve pronto para más información valiosa.