IDNStudies.com, tu recurso para respuestas rápidas y precisas. Nuestra comunidad está aquí para proporcionar respuestas detalladas a todas tus preguntas y problemas.

De 30 profesionales entre médicos, abogados e
ingenieros, se observa que unos son tanto
como los otros y los que tienen una sola
profesión son también unos tantos como otros.
¿Cuántos tienen las tres profesiones a la vez, si
son tantos como los que solo son médicos e
ingenieros y además la tercera parte de los
abogados son varones?

Sagot :

Respuesta: Hay 10 doctores en la reunión.

Explicación paso a paso: Sea  "x" el número de abogados, sea  "y"  el número de ingenieros y sea  "z" el número de doctores.

Resulta el siguiente sistema de tres ecuaciones con tres incógnitas:

x  +  y  +  z  =  30  ................. (1)

2x = y + z  ................................  (2)

(z  + 3y) - 2x  =  20 ................. (3)

Al sustituir (2) en (1), se obtiene:

x  +  2x  = 30

3x  =  30

x  =  30/3

x  = 10

Al sustituir el valor de  x   en las ecuaciones (2) y (3) resulta un sistema de dos ecuaciones con dos incógnitas:

y +  z = 20 .............  (3)

3y+ z  = 40 ............. (4)

Se multiplica la ecuación (3) por -3. Luego se suma con la (4):

-3y  -  3z  = -60

3y  +  z    =  40

....................................

      -2z    =  -20

         z     = -20/-2

         z     = 10

Y al sustituir los valores de  "x"  y  de "z" en (1), resulta:

10  +  y  +  10  =  30

y   = 30 - 10 - 10

y   = 10

Espero que te sirva