IDNStudies.com, donde la curiosidad se encuentra con la claridad. Encuentra la información que necesitas de manera rápida y sencilla a través de nuestra plataforma de preguntas y respuestas, diseñada para ti.

como puedo resolver el siguiente ejecicio: senX + sen3X + 4cos(cubo) X = 0

Sagot :

∫ cosx dx /senx =

∫ d(senx) /senx =

ln |senx| + C


======================================…

2) ∫ [sen(2x) + cos(2x)] dx =

partamos en dos integrales:

∫ sen(2x) dx + ∫ cos(2x) dx =

(1/2)[- cos(2x)] + (1/2)sen(2x) + C =

- (1/2)cos(2x) + (1/2)sen(2x) + C

concluyendo con:

(1/2)[sen(2x) - cos(2x)] + C


======================================…

3) ∫ [cos(x/3) - sen(3x)] dx =

partamos en dos integrales:

∫ cos(x/3) dx - ∫ sen(3x) dx =

3sen(x/3) - (1/3)[- cos(3x)] + C =

concluyendo con:

3sen(x/3) + (1/3)cos(3x) + C


======================================…

4) ∫ [senx /(1 - cosx)] dx =

también en este caso tenemos en el numerador la derivada del denominador (integral de la forma ∫ d[(f(x)] /f(x) = ln |f(x)| + C):

∫ d(1 - cosx) /(1 - cosx) =

ln (1 - cosx) + C

(puesto que - 1 < cosx < 1, el argumento del logaritmo es siempre positivo, luego el valor absoluto no hace falta)

∫ [sen(2x) + cos(2x)] dx =

partamos en dos integrales:

∫ sen(2x) dx + ∫ cos(2x) dx =

(1/2)[- cos(2x)] + (1/2)sen(2x) + C =

- (1/2)cos(2x) + (1/2)sen(2x) + C

concluyendo con:

(1/2)[sen(2x) - cos(2x)] + C