IDNStudies.com, donde las preguntas encuentran respuestas. Aprende respuestas detalladas a tus preguntas con la vasta experiencia de nuestros expertos en diferentes campos del conocimiento.

Se
estima que en un terreno si se plantan 200 árboles  de naranjas, la producción promedio será de
300 naranjas por árbol  y que por cada
árbol menos que se siembre la producción aumentará en 3 naranjas por
árbol. 

 
a) ¿Cuál es el número de árboles que debe plantarse en el terreno a fin de
obtener la  máxima  cosecha posible del terreno? ¿Cuál es
la producción  máxima posible?



Sagot :

Es una tarea de optimización → necesitas una función para el tamaño 
que debe ser extremo, que es en este caso la cosecha C. 
C depende del número n de árboles. 

Sabemos C(200) = 200⋅300 

Reflejamos: 
Tuviéramos n=1 árbol menos... C(199) = (200-1)⋅(300+1⋅3). 
Tuviéramos n=2 árbol menos... C(198) = (200-2)⋅(300+2⋅3). 
Tuviéramos n=3 árbol menos... C(197) = (200-3)⋅(300+3⋅3). 

Generalizamos: 
C(n) = (200-n)⋅(300+3n) 

Transformamos la ecuación: 
C(n) = -3n² + 300n + 60000 

Es una función cuadrática 
de la cual no es difícil encontrar su (¡único!) extremo, 
que es — claro — un máximo: 
V( 50 | C(50) )