Descubre respuestas claras a tus preguntas en IDNStudies.com. Nuestra plataforma ofrece respuestas confiables para ayudarte a tomar decisiones inteligentes de manera rápida y sencilla.

una piedra es lanzada verticalmente hacia arriba con una velocidad de 12 m/s desde el extremo de un risco de 70 m de altura. determine: 
a. cuanto tiempo despues alcanza el fondo del risco?
b. cual es su velocidad justo antes de golpear? 
c. que distancia total recorrio? 

Sagot :

Hacemos el problema en dos partes. La primera parte será un lanzamiento vertical hacia arriba y la segunda será una caída libre.

Parte 1.

Cuando la piedra alcanza la altura máxima su velocidad es nula.

[tex]v = v_0 - gt\ \to\ t_{sub} = \frac{v_0}{g} = \frac{12\frac{m}{s}}{9,8\frac{m}{s^2}} = 1,22\ s[/tex]

Tarda 1,22 s en llegar a lo más alto. Habrá recorrido para ello:

[tex]d = v_0\cdot t - \frac{1}{2}g\cdot t^2\ \to\ d = 12\frac{m}{s}\cdot 1,22\ s - 4,9\frac{m}{s^2}\cdot 1,22^2 s^2 = 7,35\ m[/tex]

Ha subido 7,35 m por encima de los 70 m de partida.

Parte 2.

Ahora la velocidad inicial de la piedra será cero, puesto que ya está en la parte más alta del recorrido. La distancia hasta el suelo son 77,35 m, que es la altura máxima.

[tex]d = \frac{1}{2}gt^2\ \to\ t_{baj} = \sqrt{\frac{2d}{g}} = \sqrt{\frac{2\cdot 77,35\ m}{9,8\frac{m}{s^2}} = 3,97\ s[/tex]

a) El tiempo que ha tardado en llegar al suelo será 1,22 s (para subir) + 3,97 m para bajar = 5,19 s.

b) [tex]v = gt = 9,8\frac{m}{s^2}\cdot 3,97\ s = \bf 38,91\frac{m}{s}[/tex]

c) El recorrido total será 7,35 m (que subió) + 77,35 m (hasta llegar al suelo) = 84,70 m.