IDNStudies.com, tu recurso para respuestas rápidas y claras. Nuestros expertos proporcionan respuestas rápidas y precisas para ayudarte a comprender y resolver cualquier problema.
Sagot :
Algebraicamente:
Suponiendo que n es el número de lados , la "formula de diagonales" por lados es
n(n-3)/2 , entonces planteas:
n = n(n-3)/2
2n = n^2 - 3n
5n = n^2
5n - n^2 = 0
-n^2 + 5n = 0
n(-n+5)= 0
solucion 1 = n es 0 , no es válida
solución 2 :-n + 5 = 0/n #Importante , asumiendo n distinto de 0.
-n + 5 = 0
n = 5
Por lo tanto , 5 lados tiene el poligono cuyo número de diagonales es igual al número de lados
Suponiendo que n es el número de lados , la "formula de diagonales" por lados es
n(n-3)/2 , entonces planteas:
n = n(n-3)/2
2n = n^2 - 3n
5n = n^2
5n - n^2 = 0
-n^2 + 5n = 0
n(-n+5)= 0
solucion 1 = n es 0 , no es válida
solución 2 :-n + 5 = 0/n #Importante , asumiendo n distinto de 0.
-n + 5 = 0
n = 5
Por lo tanto , 5 lados tiene el poligono cuyo número de diagonales es igual al número de lados
Respuesta:
Suponiendo que n es el número de lados , la "formula de diagonales" por lados es
n(n-3)/2 , entonces planteas:
n = n(n-3)/2
2n = n^2 - 3n
5n = n^2
5n - n^2 = 0
-n^2 + 5n = 0
n(-n+5)= 0
solucion 1 = n es 0 , no es válida
solución 2 :-n + 5 = 0/n #Importante , asumiendo n distinto de 0.
-n + 5 = 0
n = 5
Por lo tanto , 5 lados tiene el poligono cuyo número de diagonales es igual al número de lados
Explicación paso a paso:
Gracias por ser parte activa de nuestra comunidad. Continúa compartiendo tus ideas y respuestas. Tu conocimiento es esencial para nuestro desarrollo colectivo. IDNStudies.com resuelve tus dudas de manera eficaz. Gracias por visitarnos y no olvides volver para más información.