Explora IDNStudies.com y encuentra respuestas a tus preguntas sobre diversos temas. Descubre respuestas detalladas a todas tus preguntas con nuestra comunidad de expertos, siempre listos para ayudarte en cualquier tema que necesites.

Se considera la función cuadrática f(x) = ax² + bx + c con a<0, b=0, y c<0.

Entonces se cumple que

A. f(x) tiene dos raíces positivas.

B. f(x) posee máximo

C. f(x) posee mínimo de ordenada positiva.

D. Su eje de simetría es el eje OX.

E. Ninguna de las anteriores

Sagot :

Respuesta: f(x) posee máximo. (Opción B).

Explicación paso a paso:

f(x)  = ax² + bx + c

Si  a<0, b=0, y c<0,  entonces  f se convierte en:

f(x)  =  ax² +  c  ,  a<0  y  c<0.

Al derivar con respecto a x,  resulta:

    f'(x)  =  2ax,  a < 0

⇒  f" (x) = 2a < 0

⇒  f" (x) < 0

Según el criterio de la segunda derivada, f(x) posee máximo. (Opción B).