Encuentra soluciones a tus problemas con la ayuda de los expertos de IDNStudies.com. Nuestra plataforma ofrece respuestas confiables para ayudarte a tomar decisiones inteligentes de manera rápida y sencilla.
Sagot :
Lucy,
Te voy a resolver una por cada método analítico. Las otras las haces siguiendo la misma metodología.
El método gráfico aqui no es posible. Pero es muy fácil.
Cada ecuación representa una recta. Traza las dos rectas en un mismo sistema cartesiano. El punto de intersección es la solución del sistema
A-
IGUALACIÓN
3x - 4y = - 6 (1)
2x + 4y = 16 (2)
De (1)
3x = - 6 + 4y
x = 1/3(- 6 + 4y)
De (2)
2x = 16 - 4y
x = 1/2(16 - 4y)
x = x
1/3(- 6 + 4y) = 1/2(16 - 4y)
Efectuando operaciones:
2(- 6 + 4y) = 3(16 - 4y)
- 12 + 8y = 48 - 12 y
Reduciendo términos semejantes:
8y + 12y = 48 + 12
20y = 60
Despejando la incógnita
y = 60/20 y = 3
En (1)
3x - 4(3) = - 6
3x - 12 = - 6
3x = 6
x = 6/3 x = 2
SUSTUTUCIÓN
B - 2x + 3y = - 1 (1)
3x + 4y = 0 (2)
De (1)
2x = - 1 - 3y
x = 1/2(- 1 - 3y)
En (2)
3[1/2(- 1 - 3y)] + 4y = 0
Efectuando operaciones
3/2(- 1 - 3y) + 4y = 0
- 3/2 - 9/2y + 4y = 0
Reduciendo términos semejantes
- 9/2y + 8/2y = 3/2
- 1/2y = 3/2
- y = 3 y = - 3
En (2)
3x + 4(-3) = 0
3x = 12 x = 4
ELIMINACIÓN
C- 3x + 2y = 7 (1)
4x - 3y = - 2 (2)
(1) x 3
9x + 6y = 21 (1.1)
(2) x 2
8x - 6y = - 4 (2.1)
(1.1) + (2.1)
17x = 17 x = 1
En (1)
3(1) + 2y = 7
2y = 7 - 3
2y = 4 y = 2
Te voy a resolver una por cada método analítico. Las otras las haces siguiendo la misma metodología.
El método gráfico aqui no es posible. Pero es muy fácil.
Cada ecuación representa una recta. Traza las dos rectas en un mismo sistema cartesiano. El punto de intersección es la solución del sistema
A-
IGUALACIÓN
3x - 4y = - 6 (1)
2x + 4y = 16 (2)
De (1)
3x = - 6 + 4y
x = 1/3(- 6 + 4y)
De (2)
2x = 16 - 4y
x = 1/2(16 - 4y)
x = x
1/3(- 6 + 4y) = 1/2(16 - 4y)
Efectuando operaciones:
2(- 6 + 4y) = 3(16 - 4y)
- 12 + 8y = 48 - 12 y
Reduciendo términos semejantes:
8y + 12y = 48 + 12
20y = 60
Despejando la incógnita
y = 60/20 y = 3
En (1)
3x - 4(3) = - 6
3x - 12 = - 6
3x = 6
x = 6/3 x = 2
SUSTUTUCIÓN
B - 2x + 3y = - 1 (1)
3x + 4y = 0 (2)
De (1)
2x = - 1 - 3y
x = 1/2(- 1 - 3y)
En (2)
3[1/2(- 1 - 3y)] + 4y = 0
Efectuando operaciones
3/2(- 1 - 3y) + 4y = 0
- 3/2 - 9/2y + 4y = 0
Reduciendo términos semejantes
- 9/2y + 8/2y = 3/2
- 1/2y = 3/2
- y = 3 y = - 3
En (2)
3x + 4(-3) = 0
3x = 12 x = 4
ELIMINACIÓN
C- 3x + 2y = 7 (1)
4x - 3y = - 2 (2)
(1) x 3
9x + 6y = 21 (1.1)
(2) x 2
8x - 6y = - 4 (2.1)
(1.1) + (2.1)
17x = 17 x = 1
En (1)
3(1) + 2y = 7
2y = 7 - 3
2y = 4 y = 2
Gracias por tu contribución. No olvides volver para hacer preguntas y aprender cosas nuevas. Tu conocimiento es invaluable para nuestra comunidad. IDNStudies.com resuelve tus dudas de manera precisa. Gracias por visitarnos y vuelve pronto para más información útil.