Encuentra respuestas fiables a tus preguntas en IDNStudies.com. Descubre respuestas profundas a tus preguntas con la ayuda de nuestra comunidad de profesionales cualificados.
Sagot :
Función Cuadrática. Características
Una función de la forma:
f (x) = a x ² + b x + c
con a, b y c pertenecientes a los reales y a diferente de 0, es una función cuadrática y su gráfico es una curva llamada parábola.
En la ecuación cuadrática sus términos se llaman:
ax2 + bx + c = 0
ax2 termino cuadratico
bx termino lineal
c termimo independiente
si la ecuación tiene todos los términos se dice ecuación completa, si a la función le falta el término lineal o independiente se dice que la ecuación es incompleta.
Estas curvas tienen ciertos elementos que la identifican
Raíces
Las raíces ( o ceros) de la función cuadrática son aquellos valores de x para los cuales la expresión vale 0, es decir los valores de x tales que y = 0. Gráficamente corresponden a las abscisas de los puntos donde la parábola corta al eje x. Podemos ver a continuación que existen parábolas que cortan al eje x en:
Prueba con el simulador anterior como varían las raíces de la función cambiando los valores de los términos
Para poder calcular las raíces de cualquier función cuadrática calculamos f (x) = 0, entonces
ax² + bx +c = 0
Pero para resolver ax² + bx +c = 0 observamos que no podemos aplicar las propiedades de las ecuaciones, ésta tiene la particularidad de poseer un término de segundo grado, otro de primer grado y un término constante. Entonces, para resolverla podemos hacer uso de la fórmula:
al resultado de la cuenta b2 - 4ac se lo llama discriminante de la ecuación, esta operación presenta distintas posibilidades:
Si b2 - 4ac > 0 tenemos dos soluciones posibles.
Si b2 - 4ac = 0 el resultado de la raíz será 0, con lo cual la ecuación tiene una sola solución real.
Si b2 - 4ac < 0 la raíz no puede resolverse, con lo cual la ecuación no tendrá solución real.
Entonces, si la ecuación esta completa ya sabemos como calcular las raíces (con la fórmula) y si la ecuación es incompleta solo basta despejar la variable x de la ecuación:
1er caso: ax2 + bx = 0
2do caso: ax2 + c = 0
Simetría
La parábola presenta simetría respecto a una cierta recta vertical. Es decir, si conocemos dos puntos del gráfico (x1, p) y (x2, p), el eje de simetría pasará por el punto medio entre estos, o sea
Vértice
El vértice de la parábola está ubicado sobre la recta de simetría, de modo que su coordenada x, que notaremos xv vale:
Conocida la coordenada x de un punto, su correspondiente coordenada y se calcula reemplazando el valor de x en la expresión de la función.
En el vértice se calcula el máximo ( o el mínimo) valor de la función de acuerdo a que la parábola tenga sus ramas para abajo o para arriba (lo veremos a continuación).
Si la parábola no tiene raíces el vértice se puede calcular utilizando los coeficientes de la función de la siguiente manera:
Concavidad
Otra característica es si la parábola es cóncava o convexa:
En el siguiente simulador cambia los valores de a, dándole valores positivos y valores negativos.
También suele decirse que:
Si a > 0 la parábola es cóncava o con ramas hacia arriba.
Si a < 0 la parábola es convexa o con ramas hacia abajo.
Agradecemos tu participación continua. No olvides regresar para compartir tus preguntas y respuestas. Tu conocimiento es invaluable para nosotros. Tus preguntas encuentran solución en IDNStudies.com. Gracias por visitarnos y vuelve para obtener más respuestas claras.