IDNStudies.com, tu plataforma para respuestas de expertos. Sin importar la complejidad de tus preguntas, nuestra comunidad tiene las respuestas que necesitas para avanzar.

hallar la ecuacion de la circunferencia que pasa por los puntos (10,2) (4,-4) y tiene centro sobre la recta y=1/2x

respuesta:
a) [tex] x^{2} + y^{2} -8x-4y-16=0[/tex]
b) [tex] x^{2} + y^{2}+8x+4y-16=0[/tex]
c) [tex] x^{2} + y^{2}+8x-4y-16=0[/tex]

Sagot :

Solución:
Forma: (x - h)^2 + (y - k)^2 = r^2
Primer Punto (10,2)=> (10 - h)^2 + (2 - k)^2 = r^2
Segundo Punto (4, -4)=> (4 -h)^2 + (-2 - k)^= r^2
Recta=> -1/2x + y = 0 => -1/2h + k = 0

Igualamos r^2=r^2 ambos puntos, y obtenemos:

100 - 20h + h^2 + 4 -4k + k^2 = 16 - 8h + h^2 + 16 + 8k + k^2
Simplificando términos semejantes tenemos:

104 - 12h - 12k - 32 = 0=> -12h - 12k + 72 =0........(1)
-1/2h + k = 0 .........(2)
Tenemos un sistema de dos incógnitas, (h, k)

Multiplico por (-1) la ecuación (1):
12h + 12k = 72

Multiplicar por 12 la (2) ecuación:

(-1/2)(12h) + 12k = 0=> -6h + 12k = 0 ......(2)

Nuevas ecuaciones son:

12h + 12k = 72
 -6h + 12k = 0 => Multiplico por (-1)

12h + 12k = 72
 6h  - 12k = 0
____________
18h.../....= 72
.........18h = 72
............h = 72 / 18
............h = 4
Con este valor de "h" se reemplaza en cualquiera de las ecuaciones para hallar "k"

6h  - 12k = 0=> 6(4) - 12k = 0 => 24 - 12k =0 => -12k = -24 => k = -24/-12 => k=2

Centro C:(4,2) 
Ahora se halla el radio en las primeras ecuaciones yo escojo la primera:
(10 - h)^2 + (2 - k)^2 = r^2

(10 - 4)^2 + (2 - 2) = r^2 => 36 + 0 = r^2 => r= 6

Centro C:(4,2) y r= 6
Forma de la circunferencia: (x-h)^2 + (y-k)^= r^2

Sustituyendo valores encontrados, tenemos:

(x - 4)^2 + (y-2)^2 = 36
x^2 - 8x + 16 + y^2 - 4y + 4 = 36
x^2 + y^2 - 8x - 4y + 20 -36 = 0
x^2 + y^2 - 8x - 4y - 16 = 0
Respuesta: el literal "a"·

Espero haberte ayudado. Suerte.