IDNStudies.com, donde tus preguntas encuentran respuestas de expertos. Sin importar la complejidad de tus preguntas, nuestra comunidad tiene las respuestas que necesitas para avanzar y tomar decisiones informadas.

UN TRONCO DE CONO INSCRITO EN UN CILINDRO, DETERMINAR LA RELACION DE LOS RADIOS DE LAS BASES DEL TRONCO DE CONO PARA QUE EL VOLUMEN DE DICHO TRONCO SE LA MITAD DEL VOLUMEN DEL CILINDRO

Sagot :

Volumen del tronco de cono = (1/3)•π•h•(R² + r² + R•r)
Volumen del cilindro = π•r²•h

La expresión que he de escribir debe indicar que el volumen del tronco de cono debe ser la mitad que el volumen del cilindro y será así:


(1/3)•π•h•(R² + r² + R•r) = π•R²•h / 2
... siendo "R" el radio mayor del tronco de cono que coincidirá con el radio del cilindro y de aquí debo empezar a eliminar cosas a ver a dónde llego...

De momento, en los dos lados del signo "=" tengo
"π•h" así que eso desaparece y queda:
R² + r² + R•r      R²
—————— = —   ... multiplicando en cruz...
         3              2

2
R² +2r² +2R•r = 3R² -------> 2r² +2R•r = R² ...factor común de "2r"...

2r
•(r+R) = R²

              R²
(r+R) = ———
               2r

Y ya no puedo seguir. Llegué hasta aquí pero no sé si es lo que pide el ejercicio.

Saludos.