IDNStudies.com, la plataforma ideal para hacer preguntas y obtener respuestas fiables. Sin importar la complejidad de tus preguntas, nuestra comunidad tiene las respuestas que necesitas para avanzar.

una rueda gira a 3000rpm, se le aplican los frenos y se para en 30s. Halla el numero de vueltas que da hasta que se detiene, Si tiene un diametro de 2dm, calcula la aceleracion lineal y el espacio lineal 

Sagot :

Vamos a usar las ecuaciones del movimiento circular uniformemente variado. Sabemos que la velocidad angular final es cero y el tiempo empleado para detenerse es 30 s:

[tex]\omega = \omega_0 + \alpha \cdot t\ \to\ \alpha = - \frac{\omega_0}{t}[/tex]

Expresamos la velocidad angular inicial en vueltas/s:

[tex]3000\frac{vueltas}{min}\cdot \frac{1\ min}{60\ s} = 50\frac{vueltas}{s}[/tex]

Sustituimos en la ecuación para calcular la aceleración angular:

[tex]\alpha = - \frac{50\frqac{vuel}{s}}{30\ s} = - 1,67\frac{vuel}{s^2}[/tex]

Ahora podemos calcular el número de vueltas:

[tex]\phi = \omega_0\cdot t + \frac{1}{2}\cdot \alpha\cdot t^2\ \to\ \phi = 50\frac{vuel}{s}\cdot 30\ s - \frac{1,67}{2}\frac{vuel}{s^2}\cdot 30^2\ s^2 = \bf 748,5\ vueltas[/tex]

Si el diámetro es 20 dm quiere decir que el radio es la mitad, es decir, 10 dm = 0,1 m. Para calcular las magnitudes lineales basta con tener en cuenta el valor del radio.

[tex]a = \alpha\cdot R = - 1,67\frac{vuel}{s^2}\cdot \frac{2\pi}{1\ vuel}\cdot 0,1\ m = \bf - 1,05\frac{m}{s^2}[/tex]

[tex]L = \phi\cdot R = 748,5\ vueltas\cdot \frac{2\pi}{1\ vuelta}\cdot 0,1\ m = \bf 470,3\ m[/tex]