Únete a IDNStudies.com y obtén respuestas de expertos. Únete a nuestra plataforma de preguntas y respuestas para recibir respuestas rápidas y precisas de profesionales en diversos campos.

cuales son los diez casos de factorizacion

Sagot :

En matemáticas, la factorización es la descomposición de un polinomio en productos, para conseguir la solución de ecuaciones, descomponer en fracciones parciales.

Estos son los diez casos de factorización:

1. Factor de un monomio: en este caso se buscan los factores en los que se puede descomponer el término. Ejemplo:

 15ab = 3*5*ab

2. Factor común de monomio: se busca algún factor que se repita en ambos términos. Ejemplo:

[tex] a^{2} + 2a = a(a+2)[/tex]

3. Factor de un polinomio: para este caso 
en ambos términos el factor que se repite es, entonces lo puedes escribir como el factor del otro binomio. Ejemplo:

x [ a + b ] + m [ a + b ] = ( x + m ) ( a + b )  

4. Factor común por agrupación de términos: 
tienes que ver que término tienen algo en común con otro término para agruparlo. Por ejemplo tenemos que: 

ax + bx + ay + by = [ax + bx] + [ay + by]

Después de agruparlo puedes aplicar el Caso 2, Factor Común Monomio

[ax + bx] + [ay + by] = x(a + b) + y(a + b) 

Ahora aplicas el Caso 3, Factor Común Polinomio

x(a + b) + y(a + b) = (x + y) (a + b)

5.Trinomio cuadrado perfecto: si
 es trinomio cuadrado perfecto cuando cumple la siguiente regla: el Cuadrado del 1er Termino ± 2 Veces el 1er Termino por el 2do + el Cuadrado del 2do Termino. Por ejemplo:

[tex] (x+3)^{2} [/tex] = [tex] x^{2} + 6x + 9[/tex]

6.Diferencia de cuadrados perfectos: d
e una diferencia de cuadrados obtendrás 2 binomios conjugados (mismos términos diferente signo). Tenemos los siguientes ejemplos: 

a² - b² = (a - b) (a + b)
4a² - 9 = (2a - 3) (2a + 3)


7.Caso especial de diferencias de cuadrados perfectos:  siguiendo los siguientes pasos para obtener la factorización:

Factorar (a + b)² - c²

Nota: (a + b)² = (a + b) (a + b)

[(a + b) + c] [(a + b) - c]; quitamos paréntesis 

(a + b + c) (a + b – c)


8. Trinomio de la forma 
x² + bx + c: estos son los pasos mediante un ejemplo:

Para 
[tex] x^{2} +7x+12[/tex]

- Se buscan 2 números que sumados den 7 y multiplicados den 12

4 +3 = 7
3 x 3 = 12

- Luego los colocamos dentro de productos de sumas para obtener la factorización 
[tex] x^{2} + 7x + 12 = (x+3)(x+4)[/tex]

9. Trinomio de la forma 
ax² + bx + c: se deben cumplir los siguientes pasos indicados en el ejemplo para poderlo resolver:

[tex]6 x^{2} -x +2 = 0[/tex]

- Multiplicamos todos los términos del trinomio por el coeficiente del 1er termino (6).

[tex]36 x^{2} -(6)x +2 = 0[/tex]

- Colocamos entre parantesis las raices de 36[tex] x^{2} [/tex]:

(6x    )(6x   )

- Basándonos en los coeficientes del 2do termino (-1) y en el 3er termino del trinomio (-12), buscamos dos numeros que sumados den (-1) y multiplicados (-12).

-4 + 3 = -1
-4 x 3 = -12

- Ahora los sustituimos en los paréntesis colocados anteriormente y así obtenemos la factorización:

[tex] 6x^{2} - x + 2 = (6x - 3)(6x + 4)[/tex]

10. Suma o diferencia de cubos a³ + b³ = (a + b) (a² - ab + b²)

Se resuelve de la siguiente manera

- El binomio de la suma de las raíces de ambos términos (a + b) 

- El cuadrado del 1er termino, [ a² ]

-  Se resta[ - ] el producto de los 2 términos [ ab ] 

- Se suma [ + ] El cuadrado del 2do termino; [ b² ]