Obtén respuestas rápidas y fiables en IDNStudies.com. Encuentra las soluciones que necesitas de manera rápida y sencilla con la ayuda de nuestros expertos en diferentes campos.
Sagot :
Intervalo
Un subconjunto de la recta real se llama intervalo, y contiene a todos los números reales que están comprendidos entre dos cualesquiera de sus elementos.
Geométricamente los intervalos corresponden a segmentos de recta, semirrectas o la misma recta real.
Los intervalos de números correspondientes a segmentos de recta son intervalos finitos, los intervalos correspondientes a semirrectas y a la recta real son intervalos infinitos.
Los intervalos finitos pueden ser cerrados, abiertos o semiabiertos.
Sean a y b dos números reales tales que a < b.
Intervalo cerrado
Es el conjunto de números reales formado por a, b y todos los comprendidos entre ambos.
[a, b] = { x / a £ x £ b}
Intervalo abierto
Es el conjunto de los números reales comprendidos entre a y b.
(a, b) = {x / a < x < b}
Intervalo semiabierto a izquierda (o semicerrado a derecha)
Es el conjunto de números reales formado por b y los números comprendidos entre a y b.
(a, b] = {x / a < x £ b}
Intervalo semiabierto a derecha (o semicerrado a izquierda)
Es el conjunto de números reales formado por a y los números comprendidos entre a y b.
[a, b) = { x / a £ x < b}
Intervalos infinitos
[a, +¥) = { x / x ³ a} (a, +¥) = { x / x > a}
(-¥ , b] = { x / x £ b} (-¥ , b) = { x / x < b}
(-¥ , +¥ ) = R
Respuesta:
Intervalo
Un subconjunto de la recta real se llama intervalo, y contiene a todos los números reales que están comprendidos entre dos cualesquiera de sus elementos.
Geométricamente los intervalos corresponden a segmentos de recta, semirrectas o la misma recta real.
Los intervalos de números correspondientes a segmentos de recta son intervalos finitos, los intervalos correspondientes a semirrectas y a la recta real son intervalos infinitos.
Los intervalos finitos pueden ser cerrados, abiertos o semiabiertos.
Sean a y b dos números reales tales que a < b.
Intervalo cerrado
Es el conjunto de números reales formado por a, b y todos los comprendidos entre ambos.
[a, b] = { x / a £ x £ b}
Intervalo abierto
Es el conjunto de los números reales comprendidos entre a y b.
(a, b) = {x / a < x < b}
Intervalo semiabierto a izquierda (o semicerrado a derecha)
Es el conjunto de números reales formado por b y los números comprendidos entre a y b.
(a, b] = {x / a < x £ b}
Intervalo semiabierto a derecha (o semicerrado a izquierda)
Es el conjunto de números reales formado por a y los números comprendidos entre a y b.
[a, b) = { x / a £ x < b}
Intervalos infinitos
[a, +¥) = { x / x ³ a} (a, +¥) = { x / x > a}
(-¥ , b] = { x / x £ b} (-¥ , b) = { x / x < b}
(-¥ , +¥ ) = R
Explicación paso a paso:
Tu participación activa es fundamental. No dudes en regresar para seguir contribuyendo con tus preguntas y respuestas. Juntos construiremos una comunidad más sabia. Gracias por elegir IDNStudies.com para resolver tus dudas. Vuelve pronto para obtener más respuestas claras y precisas.