IDNStudies.com, tu recurso para respuestas rápidas y precisas. Descubre respuestas profundas a tus preguntas con la ayuda de nuestra comunidad de profesionales altamente cualificados.

El area de un rombo es 243cm2. Si su diagonal mide 9cm ¿cuanto mide la otra diagonal?

plis de urgen 

 

Sagot :

Llamaremos:
D : Diagonal Mayor
d : diagonal menor
L : Lado del rombo

Al trazar las diagonales vemos que quedan determinados 4 triángulos rectángulos iguales en los que:

cateto menor = d/2
Cateto Mayor = D/2
hipotenusa = L

De modo que aplicando Pitágoras tendremos:

L² = (D/2)² + (d/2)² → L² = (D² + d²) / 4 →

D² + d² - 4L² = 0 ... (1)
____________________

Por otra parte, sabemos que el área "A" de un rombo se calcula como:
A = ½ . D . d

De donde:
d = (2A)/D ... (2)
____________________

De (2) en (1) tendremos: D² + [(2A)/D]² - 4L² = 0 →
D² + [(4A²)/D²] - 4L² = 0 → D⁴ + (4A²) - 4L².D² = 0 →

D⁴ - (4L²).D² + (4A²) = 0 ... (3)
____________________

(3) es una ecuación cuadrática en términos de "D²" que podemos resolver aplicando la resolvente, es decir:

[-b ± √(b² - 4.a.c)] / (2.a)

obteniendo:

D² = 2L² ± 2.√(L⁴ - A²) ... (4)

Los valores que intervienen en (4), o sea: "L" y "A" son los datos de nuestro problema, por lo que obtendremos dos valores para "D²": con el signo "+" tendremos el cuadrado de la diagonal mayor (D²) y con el signo "-" tendremos el cuadrado de la diagonal menor (d²). Es decir:

D² = 2L² + 2.√(L⁴ - A²)
d² = 2L² - 2.√(L⁴ - A²)
____________________

Efectuando ambas cuentas y tomando las raices cuadradas resultarán:

D = 28,92
d = 21,44