Descubre cómo IDNStudies.com puede ayudarte a encontrar las respuestas que necesitas. Únete a nuestra plataforma de preguntas y respuestas para obtener respuestas precisas a todas tus preguntas importantes.
Sagot :
Puedes entender una función como una manera de conectar elementos de un conjunto "A" a los de otro conjunto "B":
"Injectivo" significa que cada elemento de "B" tiene como mucho uno de "A" al que corresponde (pero esto no nos dice que todos los elementos de "B" tengan alguno en "A").
"Sobreyectivo" significa que cada elemento de "B" tiene por lo menos uno de "A" (a lo mejor más de uno).
"Biyectivo" significa inyectivo y sobreyectivo a la vez. Así que hay una correspondencia perfecta "uno a uno" entre los elementos de los dos conjuntos.
Definiciones formales
Inyectivo
Una función f es inyectiva si, cuando f(x) = f(y), x = y.
Ejemplo: f(x) = x2 del conjunto de los números naturales a es una función inyectiva.
(Pero f(x) = x2 no es inyectiva cuando es desde el conjunto de enteros (esto incluye números negativos) porque tienes por ejemplo
f(2) = 4 y
f(-2) = 4)
Nota: inyectiva también se llama "uno a uno", pero esto se confunde porque suena un poco como si fuera biyectiva.
Sobreyectivo (o también "epiyectivo")
Una función f (de un conjunto A a otro B) es sobreyectiva si para cada y en B, existe por lo menos un x en A que cumple f(x) = y, en otras palabras f es sobreyectiva si y sólo si f(A) = B.
Así que cada elemento de la imagen corresponde con un elemento del dominio por lo menos.
Ejemplo: la función f(x) = 2x del conjunto de los números naturales al de los números pares no negativos es sobreyectiva.
Sin embargo, f(x) = 2x del conjunto de los números naturales a no es sobreyectiva, porque, por ejemplo, ningún elemento de va al 3 por esta función.
Biyectiva
Una función f (del conjunto A al B) es biyectiva si, para cada y en B, hay exactamente un x en A que cumple que f(x) = y
Alternativamente, f es biyectiva si es a la vez inyectiva y sobreyectiva.
Ejemplo: La función f(x) = x2 del conjunto de números reales positivos al mismo conjunto es inyectiva y sobreyectiva. Por lo tanto es biyectiva.
(Pero no desde el conjunto de todos los números reales porque podrías tener por ejemplo
f(2)=4 y
f(-2)=4)
Valoramos tu contribución. Sigue haciendo preguntas y proporcionando respuestas. Juntos construiremos una comunidad fuerte y unida de conocimiento. En IDNStudies.com, tus dudas son nuestra prioridad. Gracias por visitarnos y vuelve pronto para más respuestas.